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Abstract: In this paper an attempt has been made to decompose an image using lifting scheme so as to suite compression. 

Lifting based wavelets are constructed using Haar, Daubechies, Bi-orthogonal, CDF, Symlet wavelets. A large number of 

medical images are considered. A new design metric which is a combination of PSNR and CR is proposed. Compression 

ratio and PSNR are calculated and compared the results with so called traditional wavelets. It has been observed that the 

lifting based wavelets have produced better compression results. 
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I. INTRODUCTION 

The wavelets are a family of functions generated from a 

single function by translation and dilation. The general form 

of these wavelets is described by 
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 is called the mother wavelet and it is used to generate all 

other members of the family. A common choice for a and b 

is 

a – 2
m
, b – 2

n
 where n, m є Z. 

This reduces (1) to 
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These wavelets are used in the wavelet transform. The 

purpose of the wavelet transform is to represent a signal, 

x(t), as a superposition of wavelets. For special choices of 

 the signal can be represented as 
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The purpose of obtaining this description is that it provides a 

representation of the signal x(t) in terms of both space and 

frequency localization. In comparison, the Fourier transform 

is excellent at providing a description of the frequency 

content of a signal. But if the signal is non-stationary the 

frequency characteristics vary in space, that is in different 

regions the signal x(t) may exhibit very different frequency 

characteristics, the Fourier transform does not take this into 

account.  

The wavelet transform on the other hand produces a 

representation that provides information on both the  

 

 

frequency characteristics and where these characteristics are 

localized in space. The coefficients cm,n characterizes the 

projection of x onto the base formed by  m,n. For different 

m  m,n represents different frequency characteristics, n is 

the translation of the dilated mother wavelet, therefore cm,n 

represent the combined space-frequency characteristics of 

the signal. The cm,n are called wavelet coefficients. The rest 

of the paper is organized as follows. The next section gives a 

review of classical wavelets. The section III presents 

decomposition of image by using lifting. Section IV presents 

the simulation results of traditional and lifting wavelets. 

Section V concludes the paper.  

II. TRADITIONAL WAVELETS – A REVIEW 

From an historical point of view, wavelet analysis is a new 

method, though its mathematical roots date back to the work 

of Joseph Fourier in the nineteenth century. Fourier laid the 

foundations with his theories of frequency analysis, which 

proved to be enormously important and influential. The 

attention of researchers gradually turned from frequency-

based analysis to scale-based analysis when it started to 

become clear that an approach measuring average 

fluctuations at different scales might prove less sensitive to 

noise. The first recorded mention of what we now call a 

"wavelet" seems to be in 1909, in a thesis by Alfred Haar 

[1]. The concept of wavelets in its present theoretical form 

was first proposed by Jean Morlet and the team at the 

Marseille Theoretical Physics Center working under Alex 

Grossmann in France. The methods of wavelet analysis have 

been developed mainly by Y. Meyer and his colleagues, who 

have ensured the methods' dissemination.  

The main algorithm dates back to the work of Stephane 

Mallat in 1988. Since then, research on wavelets has become 

international. Such research is particularly active in the 

United States, where it is spearheaded by the work of 
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scientists such as Ingrid Daubechies, Ronald Coifman, and 

Victor Wickerhauser. 

A. Haar 

Any discussion of wavelets begins with Haar wavelet, the 

first and simplest. Haar wavelet is discontinuous, and 

resembles a step function. It represents the same wavelet as 

Daubechies db1. The basis function of Haar wavelet is 

shown in figure 1. 

 
Fig. 1 Basis function of Haar Wavelet 

B. Daubechies  

Ingrid Daubechies, one of the brightest stars in the world of 

wavelet research, invented what are called compactly 

supported orthonormal wavelets -- thus making discrete 

wavelet analysis practicable [2]. The names of the 

Daubechies family wavelets are written dbN, where N is the 

order, and db the "surname" of the wavelet. The db1 

wavelet, as mentioned above, is the same as Haar wavelet. 

The figure 2 shows the wavelet functions of the next nine 

members of the family. 
  

 
Fig. 2 Basis functions of Daubechies Wavelet Family 
 

C. Biorthogonal 

This family of wavelets exhibits the property of linear phase, 

which is needed for signal and image reconstruction. By 

using two wavelets, one for decomposition (on the left side) 

and the other for reconstruction (on the right side) instead of 

the same single one, interesting properties are derived. The 

basis functions of Biorthogonal wavelets are shown in figure 

3. 

 

D. Coiflet 

Coiflet wavelets are built by I. Daubechies on the request of 

R. Coifman. The wavelet function has 2N moments equal to 

0 and the scaling function has 2N-1 moments equal to 0. The 

two functions have a support of length 6N-1 [3]. The figure 

4 shows the basis functions of the family of Coiflet wavelets. 

E. Symlet 

The symlets are nearly symmetrical wavelets proposed by 

Daubechies as modifications to the db family. The properties 

of the two wavelet families are similar. The figure 5 shows 

the wavelet functions. 

 

 
Fig. 3 Basis functions of Bi-orthogonal Wavelet Family 

 

 

 
 

Fig. 4 Basis functions of Coiflet Family 
 

 

 

F. Di-Meyer 

The Meyer wavelet and scaling function are defined in the 

frequency domain [4]. The discrete version of Meyer 

wavelet is usually written as Di-meyer of which the basis 

function is plotted in the figure 6. 
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Fig. 5 Basis functions of Symlet Family 

 

 
Fig. 6 Basis function of Discrete Meyer Wavelet 

III. HAAR DECOMPOSITION BY LIFTING 

The wavelets generated by translations and dilatations of a 

single or several basic functions are called first generation 

wavelets (classic wavelets). Since these operations represent 

algebraic operations in the frequency domain, the basic tool 

for their construction is the Fourier transform. There are a 

number of problems, such as problems defined on intervals, 

curves, surfaces or manifolds, where the Fourier transform 

cannot be applied, and thus neither can classic wavelets.  

Classic wavelets also need to be modified when used for 

solving problems defined by irregular grids or where the 

inner product with a weight function needs to be used. 

Wavelets, attached to problems not allowing for translation 

and dilatation, are called second generation 'wavelets. 

Coefficients that correspond to these wavelets can depend on 

the resolution level. It is clear that working with non-

constant coefficients is more complex. The basic idea of 

wavelet transform is to use a correlation existing in most 

signals in order to construct a good approximation with few 

addends.  

A correlation is a typical local property in space (time) and 

frequency, meaning that neighbouring data and frequencies 

are far more correlated than those further moved from each 

other. In transformation with classic wavelets the basic tool 

for the space (time)-frequency localization is the Fourier 

transform, which cannot be applied to more complex 

geometries. However, localization can be performed in the 

physical domain space, time etc.), which is the essence of 

the so-called "lifting" algorithm. This algorithm was 

primarily developed for constructing second generation 

wavelets, but it is used successfully also for the construction 

of biorthogonal wavelets [5][6]. 

Lifting generalizes the idea of multiresolution to spaces that 

are not invariant relative to translation and dilatation, thus 

enabling users to create wavelets according to their needs 

and to speed up wavelet transform. The basic idea is to use 

the correlation between neighbouring data in the signal. The 

way in which this is performed shall be illustrated on a 

simple example of constructing biorthogonal wavelets. 

Wavelet algorithms are recursive. The output of one step of 

the algorithm becomes the input for the next step. The initial 

input data set consists of 2
p
 elements. Each successive step 

operates on 2
p-i

 elements, where i = 1 ... p-1. For example, if 

the initial data set contains 256 elements, the wavelet 

transform will consist of eight steps on 256, 128, 64, 32, 16, 

8, 4, and 2 elements. 

If element i in step j is being updated, the notation stepj,i is 

used. The forward lifting scheme wavelet transform divides 

the data set being processed into an even half and an odd 

half. In the notation below eveni is the index of the 

i
th

 element in the even half and oddi is the i
th

 element in the 

odd half.  Viewed as a continuous array the even element 

would be a[i] and the odd element would be a[i+(p/2)]. 

Another way to refer to the recursive steps is by their power 

of two. Here stepj-1 follows stepj, since each wavelet step 

operates on a decreasing power of two. This is a nice 

notation, since the references to the recursive step in a 

summation also correspond to the power of two being 

calculated. 

 

A. Predict Wavelets 

Like all lifting scheme wavelets the predict wavelet 

transform starts with a split step, which divides the data set 

into odd and even elements. The predict step uses a function 

that approximates the data set. The difference between the 

approximation and the actual data replaces the odd elements 

of the data set. The even elements are left unchanged and 

become the input for the next step in the transform. The 

predict step, where the odd value is "predicted" from the 

even value is described by the equation 

oddj+1,i = oddj,i - P( evenj,i ) 

 

The inverse predict transform adds the prediction value to 

the odd element. In the inverse transform the predict step is 

followed by a merge step which interleaves the odd and even 

elements back into a single data stream. The simple predict 

wavelets are not useful for most wavelet applications. The 

even elements that are used to "predict" the odd elements 

result from sampling the original data set by powers of two 

(e.g., 2, 4, 8...).  

B. The update step 

The update step replaces the even elements with an average. 

This result in a smoother input for the next step of the 

wavelet transform. The odd elements also represent an 

approximation of the original data set, which allows filters to 

be constructed. A simple lifting scheme forward transform is 

shown in Fig. 7. 
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Fig. 7. Lifting Scheme – Forward wavelet transform 
 

The update phase follows the predict phase. The original 

value of the odd elements has been overwritten by the 

difference between the odd element and its even "predictor". 

So in calculating an average the update phase must operate 

on the differences that are stored in the odd elements: 

evenj+1,i = evenj,i + U( oddj+1,i ) 

C. Lifting Scheme Haar Transform 

In the lifting scheme version of the Haar transform, the 

prediction step predicts that the odd element will be equal to 

the even element. The difference between the predicted 

value (the even element) and the actual value of the odd 

element replaces the odd element. For the forward transform 

iteration j and element i, the new odd element, j+1,i would 

be 

oddj+1,i = oddj,i - evenj,i 

In the lifting scheme version of the Haar transform the 

update step replaces an even element with the average of the 

even/odd pair (e.g., the even element si and its odd 

successor, si+1): 

2
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The original value of the oddj,i element has been replaced by 

the difference between this element and its even predecessor. 

Simple algebra lets us recover the original value: 

oddj,i = evenj,i + oddj+1,i 

Substituting this into the average, we get 
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The averages (even elements) become the input for the next 

recursive step of the forward transform. This is shown in 

Fig. 8, below. 

 
 

Fig. 8. Two Steps in Lifting forward transform 
 

The number of data elements processed by the wavelet 

transform must be a power of two. If there are 2
p
 data 

elements, the first step of the forward transform will produce 

2
p-1

 averages and 2
p-1

 differences. These differences are 

sometimes referred to as wavelet coefficients. Fig. 9 shows a 

4-steps forward wavelet transform on a 16-element data set. 

 

 
 

Fig. 9. 4 steps of a 16 element wavelet transform 
 

The split phase that starts each forward transform step 

moves the odd elements to the second half of the array, 

leaving the even elements in the lower half. At the end of the 

transform step the odd elements are replaced by the 

differences and the even elements are replaced by the 

averages. The even elements become the input for the next 

step, which again starts with the split phase. One of the 

elegant features of the lifting scheme is that the inverse 

transform is a mirror of the forward transform which is 

shown is Fig. 10. In the case of the Haar transform, additions 

are substituted for subtractions and subtractions for 

additions. The merge step replaces the split step. 

 

 
 

Fig. 10. Inverse Lifting scheme 

 

IV.  SIMULATION RESULTS 
 

In this section simulation results of implemented techniques 

are presented. A broad range of medical images are 

considered and results on five images are presented here. A 

number of lifting based wavelets are designed. The designed 

wavelets are “haar, db2, db4, db5, db8, bior4.4, cdf1.3, 

cdf5.3, sym3 and sym5”. All these wavelets are 

implemented using lifting scheme. The results are tabulated 

in table I. 
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TABLE I 

PERFORMANCE OF DIFFERENT LIFTING BASED WAVELETS ON MEDICAL IMAGES 
 

Image ct.jpg mri.tif mri3.tif mri4.tif mri5.tif 

Wavelet CR  PSNR CR  PSNR CR  PSNR CR  PSNR CR  PSNR 

Haar 3.19 39.11 3.23 39.76 2.79 34.69 2.81 34.85 2.81 34.89 

db2 3.20 38.48 3.21 38.83 2.85 34.41 2.87 34.49 2.87 34.57 

db4 3.54 38.90 3.25 39.68 3.16 37.40 3.17 37.52 3.20 37.46 

db5 3.53 38.95 3.24 39.54 3.02 36.11 3.02 36.22 3.05 36.27 

db8 3.13 33.98 2.79 31.29 3.06 32.46 3.06 32.46 3.09 32.83 

bior4.4 3.51 38.71 3.24 39.59 2.91 35.11 2.92 35.18 2.93 35.37 

cdf1.3 3.19 39.31 3.21 39.59 2.79 34.70 2.81 34.85 2.80 34.94 

cdf5.3 3.20 34.79 2.74 29.24 2.89 35.98 2.90 35.78 2.91 36.33 

sym3 3.19 38.90 3.25 39.67 2.81 34.66 2.82 34.75 2.83 34.95 

sym4 3.22 38.59 3.24 39.22 2.94 35.00 2.96 35.16 2.97 35.26 

Table II shows the average values of CR and PSNR obtained 

on the five images. 

TABLE II 

AVERAGE VALUES OF CR AND PSNR 

Wavelet CR PSNR 

Haar 2.97 36.66 

db2 3.00 36.16 

db4 3.26 38.19 

db5 3.17 37.42 

db8 3.02 32.61 

bior4.4 3.10 36.79 

cdf1.3 2.96 36.68 

cdf5.3 2.93 34.43 

sym3 2.98 36.59 

sym4 3.07 36.65 

 

The average CR and PSNR are plotted in Fig. 11 and 12. 

From the figures it can be understood that except with db8 

and cdf5.3 the PSNR is greater than 35dB and CR is around 

3bpp. The compression can be verified by the well-

established design metrics PSNR and CR [7]. But by 

considering any one of the above, one cannot come to an 

opinion on how far the compression successful. Consider a 

case where PSNR is very high, but the CR is very less, say 

approximately 1. In this first case, even though the PSNR is 

very high, it can be well said that the image was not 

compressed. Think of calculating PSNR of one image with 

the same image. In the second case, consider CR is very 

high, but PSNR is very less. In this case the original image 

could not be reconstructed or recognized from the 

compressed image. Hence, one may think that this 

compression corrupted the image. So, in compression both 

PSNR and CR should be high [8][9][10].  
 

 
Fig. 11. Average CR 

 
Fig. 12. Average PSNR 

 

Because, for better compression performance, both PSNR 

and CR should be high, let us multiply these two. The new 
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parameter will give us an idea on which wavelet is 

performing better. The PSNR*CR values are calculated for 

the lifting scheme and plotted in the Fig. 13. Of course, the 

discussion is not on finding better wavelet here for 

compression, but to verify how the lifting based wavelets are 

performing over the traditional wavelets.  
 

 

For that purpose consider the traditional wavelets results 

obtained and presented in [11] for reference. The PSNR*CR 

is calculated for the traditional wavelets of table III and 

plotted in figure 14. By comparing the figures 13 and 14, 

one can easily state that the lifting based transforms 

outperform the traditional wavelets. 

                       Fig. 13. PSNR*CR of Lifting Scheme 

 

TABLE III 

COMPRESSION PERFORMANCE OF TRADITIONAL WAVELETS 
 

Image Parameter HAAR DAUBECHIE BIORTHOGONAL DEMEYER COIFLET SYMLET 

CT 
CR 3.4 1.77 3.05 1.9 2.89 1.88 

PSNR 24.7 24.3 26.7 24.6 45.5 24.6 

MRI-1 
CR 3 2.6 2.7 1.62 2.4 2.7 

PSNR 24.8 30.9 32.18 30.8 49.8 30.9 

MRI-2 
CR 2.9 2.6 2.7 1.61 2.4 2.7 

PSNR 25.2 31 32.8 31.3 50 31.5 

MRI-3 
CR 3.62 3.478 3.53 2.12 3.2 3.57 

PSNR 23.1 23.74 24.07 23.77 40 23.7 

MRI-4 
CR 3.03 2.6 2.73 1.63 2.4 2.72 

PSNR 24.2 30.54 31.39 30.4 49.2 30.4 

MRI-5 
CR 3.05 2.6 2.7 1.63 2.46 2.73 

PSNR 23.9 30.1 31 30.05 48.8 30.42 

MRI-6 
CR 3.05 2.69 2.75 1.64 2.47 2.75 

PSNR 24.7 30.87 32.44 30.62 50.1 30.91 
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Fig. 14. PSNR*CR in case of Traditional Wavelets 

V. CONCLUSIONS 

This paper presents the lifting version of various classical 

wavelets. It has been observed that the compression 

performance was improved compared to that of classical 

wavelets. A new design metric in terms of PSNR and CR 

was proposed and used to analyse and compare the 

traditional and lifting based wavelets. With the traditional 

wavelets the PSNR*CR ranges between 65 and 100. Except 

with Coiflet wavelet, the PSNR*CR is less than 80. In the 

case of lifting based wavelets the PSNR*CR is greater than 

100. With db4, the PSNR*CR is 124.5, which is very high 

compared to that of traditional db4’s just 80+. With this 

analysis one can state that the lifting scheme outperforms 

classical wavelets. 
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